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Recognizing Successive Dolphin Echoes with an Integrator
Gateway Network

P. W. B Moore', H. L. Roitblat3 and P. E. Nachtigall"''
'The Naval Command, Control and Ocean Surveillance Center

(RDT&E Division), San Diego CA 92152-5000
2Hawaii Institute of Marine Biology, University of Hawaii, Kailua, HI 96734

3Department of Psychology, University of Hawaii, Honolulu, HI 96822

Abstract bottlenose dolphin, housed in a floating enclosure in
Kaneohe Bay at the Hawaii Laboratory of the The

A novel network architecture was developed to classify NavalCommand, Control and Ocean Surveillant, e Center
multiple successive echoes from taigets ensonified by a (RDT&E Division). During the echolocation tests the
dolphin echolocating in a naturalistic environment. The animals' eyes are covered with soft removable eyecups
inputs to the network were spectral vectors of the echo that occlude its vision. Echolocation data were recorded
plus one unit representing the start of each scan. This while the animal was performing a delayed matching-to-
network combined information from successive echoes sample (DMTS) object recognition task.
from the same target and reset between scans of In this task, the dolphin must select from a set
different targets. The network was trained on a small of three alternatives the one target that is the same as
subset (4%) of the total set of available echoes (1.335). (matches) a previously presented sample target. The
Depending on the measure used to assess it, the network identity and location of the targets vary randomly from
correctly classified between 90% and 93% of all echo trial to trial, so performance on this task requires the
trains. In contrast, a standard backpropagation network animal to recognize the sample, remember its identity,
with the same number of units and variable connections and to recognize the matching target To perform this
performed with only about 63% accuracy in classifying task the dolphin stationed under water in the center of an
echo trains. The integration model seems to provide a observing aperture, located directly in front of the
better account of the dolphin's performance than a sample target array. Three sets of comparison targets
decision model that does not combine information from were suspended in front of the animal from a bar located
multiple echoes. 4.3 m from the underwater aperture. Echolocation

clicks were detected by B&K 8103 hydrophone% located
Inttoduction 2 m from the observing aperture between the aperture

and the targets.. Echoes from the targets were recorded
Bottlenose dolphins (tursiops truncolus) possess using a custom-built hydrophone with a flat response up

a unique biological sonar which is highly adapted to to 200 kHz. Recordings were made using a RACAL
their aquatic environment (Moore et al, 1990). Using store-4 tape recorder, with a 300 kHz dynamic range,
this sonar the dolphin can readily identify many from which clicks and echoes were digitized at I MHz
characteristics of submerged objects by sending out Figure I is a schematic of the testing configuration.
broad-band high frequency clicks and processing the The present study used three targets. (a) a PVC
returning echoes (see Nachtigall, 1980, for a review). plastic tube open at both ends (15 cm long, 7 5 cm

The specific processes by which the dolphin diameter, 30 mm wall thickness), (b) a water-filled
extracts acoustic information about the targets is stainless steel sphere (5 cm diameter), and (c) a solid
unknown and particularly interesting questions concern aluminum cone (10 cm diameter base, 10 cm height),
how the animal performs feature extraction from a set of each presented approximately 100 cm below the water's
returning echoes (Nachtigall & Moore, 1988) surface, Four examples of each target were used, one

as sample, and the other three as alternative comparison
Behavioral nmethods targets Each trial began with the dolphin stationed in

the observing aperture with the acoustic screen closed
Our subject is a highly experienced male One of the sample targets was then lowered into the
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water, the screen was lowered, and the dolphin was which may have been an inappropriate assumption in
OVERHEAD light of the variability in the dolphin's click production.
LINE Because of the sampling procedure (echoes were selected

largely on the basis of their intensity), the echoes
submitted to the neural network may not have been
typical of the population of echoes the dolphin actually
used. This possibility could have led to an overestimate
of the ability of the models to recognize targets on the
basis of dolphin echolocation returns.

In response to these considerations we extended
RESPONSE rour analysis to include every echo available to the

dolphin. In contrast to our previous studies concerning
the classification of echoes, in which echoes were
selected for inclusion if they were sufficiently intense, in

• •SAMPLE.

'tRAA, the present study we captured the echo resulting from

APERTURE ACOUST every click the animal emitted in the sampled trials.
SNUTTER HTOROPHOWES ACARCS

Figum J. A schematic of the test-pen. The animal is shown stationed The integrator gateway network
facing the acoustic screen, measuring hydrophones and the comparison
and the sample target arroys. The hydrophone used to collect the A new network architecture was developed in
echoes from the targets was placed on the right side of the animal. order to model the dolphin's extraction of information

allowed to echolocate ad lib. The acoustic screen was from trains of echoes. The model incorporates the
then raised, the sample was removed from the water and assumption that the dolphin averages or sums spectral

information from successive echoes and continues to
three alternative targets were then presented. The screen emit clicks and collect returning echoes until it can
was then again lowered and the dolphin was allowed to classify the target producing those echoes with sufficient

echolocate on the comparison targets. The animal

indicated his choice by contacting a small ball on the confidence. The inputs to this network were patterns of

end of a response wand at the water surface, and directly spectral intensity (i.e., amplitude in each frequency

in front of each comparison target array. The dolphin's band). The outputs of the network were stimulus

choice accuracy averaged nearly 95% correct. classes. One output corresponded to each stimulus class,
sphere, cone, and tube. The resulting activations of each

Echo analysis using a counterpropagation network of these output classes were taken to be an estimate ofthe likelihood that the echo resulted from the particular

A selected sample of echoes collected from this stimulus type (Qian & Sejnowski, 1988). Figure 2

experiment was submitted to a counterpropagation shows the overall structure of the Integrator Gateway

network (-lecht-Nielsen, 1987, 1988; see also Grossberg, Network.

1976) trained to classify a subset of these echoes into Inputs to the network consisted of 30 bins of
relative amplitude spectral information, 3.91 kHz percategories corresponding to each of the stimuli (see bin, ranging from 31.25 kHz to 146.5 kHz. Each echo

Roitblat, Moore, Nachtigall, Penner, & Au, 1989; for a
description of this work). This network learned to was not (0.00) at the start of an echo train. The first
classify the spectral information from the echoes with input to the network contained the start-of-train marker,
considerable accuracy above 95% correct (including the remaining elements contained the amplitude of a
novel exemplars). Although the network could identify specified frequency range. The frequency inputs were
the target with only a single echo, the dolphin then passed to a scaler unit and to the integrator layer.
concurrently performing the same task emitted manymore clicks in identifying the same targets. We also The integrator layer (grey circles) also contained 30
morecicks intha the dosphinw asmore tariagets. We teso units, connected to the frequency units in the input layer
noticed that the dolphin was more variable in terms of in a corresponding one-to-one pattern. The connection
the number of clicks and the number of scans used to weights from the inputs to the integrator layer were fixed
identify the correct match than was predicted by asequentify sathecorrec match thn was prer acted by a , at 1.00. The connections to the scaler unit were fixed at
e al , 1990) II/n, where n is the number of frequency inputs (i e., 30).

The sequential sampling model assumed that
the echoes were drawn from a stationary distribution,



of the start-of-scan marker, and the activation during the
previous time step of the corresponding unit in the

integrator layer. Because the marker had 1.00 activity at
the start of a click train and 0.00 activity otherwise, this
marker allowed the gateway unit to function as a reset

I, I I I I signal, causing the units in the integrator layer to be
reset to 0.0 at the start of every scan.

111,0l11111ilhll.l.Ill. During each time step, the output of the integrator
layer also led via variable-weight connections to each of

IPVT VECTOR the elements in the feature layer. The outputs of the
"I "VECTOR FOR elements in the Feature Layer then led via variable-
EAcH ECHO weight connections to the output or classification layer.
IN A TRAIN

The elements in these two layers contained sigmoid
, . , ..-. transfer functions and were trained using a standard

"cumulative backpropagation algorithm (McClelland &

---------- Rumelhart, 1988; Rumelhart, Hinton. & Willams, 1986)
"with the epoch size set to the number of training

"% % isamples (60).
l "The network was trained with six sets ot twn

""�,----------" successive echoes selected from the ends of haphazardly
chosen echo trains Two sets of echoes were chosen for

Figure 2. A schemuric of the Integrar.orGatewa, Network. The each stimulus in the set The network was trained with
bottom part of the figure shows one echo in the form of relatfie declining learning-rate parameters. The network
amplitude andasiart-of-scem marker. Elipses indicate that the full converged to a criterion RMS output error of 005 after
network contains additional units of the some P1pe2,30nierations

)2,300 iterations

The output of the icaler unit, which was simply
the sum of all of its inputs, was passed to each of the SPHERE

units in the integrator layer via a fixed weight of -1.00. ,
The effect of this scaler unit was to subtract the average
activity of the input layer (neglecting the start-of-train U

marker) from the inputs to the integrator layer.
The elements in the integrator layer computed a CONE

cumulative (running) sum of the inputs they received.One echo was presented per time step. The activation of

each unit in the integrator layer was the sum of the
activation it had during the previous time step, plus the
activation it received from the scaler unit, plus the TUBE

activation it received from its respective input, plus the
activation of its corresponding gateway unit. The role of i ' N, .0

the integrator layer was to accumulate and integrate
information from successive echoes The outputs of the s,,,Et•,ttcoS
integrator layer were passed back via fixed connections
with 1.00 weights to corresponding units in the gateway Figure 3. Results of generalization testing of the network in the form

layer (open triangles) Each unit in the gateway layer of the confidence of the network in assigning the echo troin ti the

acted as a reset for the corresponding unit in the proper category

integrator layer.
The connection between each gateway unit and Integrator gateway rsult. and discussion

its corresponding integrator unit was fixed at
-I 00 The output of the gateway unit was the product Figure 3 shows the results of generaliaton testing
of the output of its corresponding integrator unit and the ofqtentwor The complete, o set of an335
start-of-scan marker The activation from the gateway sequential echoes vas presented to the network and theunit received by the integrator unit consisted of the network was allowed to classify each echo traIn. Figure

3 shows the confidence of the network in assigning theproduct of the connection weipht (-I 00), the aclativtone
echo train to the 59o0ei catcgor, as a function of the
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number of echoes received. "Confidence" was defined capable of such rigid timing and may need to emit some
as the ratio of the activation level of the correct clicks simply to determine target distance in order to
classification versus the total output of the three extract other information.
classification units. These confidence ratios correspond The final possibility that has occurred to us is that
to intermediate likelihood ratios (Qian & Sejnowski, the dolphin may not have been as task-focused as the
1988). Overall, the animal's performance is better than neural network. The echoes were collected in a natural
that of our network. Roitblat, et al. (1990b) reported environment containing, for example, many moving fish,
that the dolphin was 94.5% correct at selecting the other dolphins, etc. It is possible that at least some of
correct match. This level of performance required the the clicks may have been directed at targets other than
animal to identify the sample correctly and to identify those presented explicitly by the experimenters, or that
comparison stimuli correctly. The probability of both the dolphin continued to click at the target while actually
occurring was observed to be 0.945. Therefore, on the attending elsewhere.
assumption that the two identifications were independent
of one another, the probability of identifying both is A simple backpwpagation network
simply the product of the probabilities of identifying
each target individually. Therefore, the probability of The architecture of the integrator gateway network
each identification can be estimated at p = -40.945 is substantially more complicated than that of some more
0o972 (assuming that each occurred with equal standard networks architectures. By way of comparison,
probability). By no measure was our network 97.2% therefore, we trained a backpropagation network on the
accurate at identifying the stimuli, but when it did same data in order to determine whether this additional

identify the stimuli it tended to do so with fewer echoes structure contributed to the perfrmance of the network
than were used by the dolphin. The backpropagation network contained exactly the same

According to our model, on a substantial number number of inputs, hidden units, outputs, and adjustable
of trials the dolphin continued to emit echolocation connections as the integrator network. The only
signals beyond the rational stopping criterion prescribed difference between the networks was the presence of the
by sequential sampling theory, and failed to emit integration apparatus in the integrator network and its
sufficient clicks on one scan (the first scan of tube absence in the backpropagation network. The
targets). There could be several reasons why the backpropagation network was trained to the same 0.05
dolphin continued to sample after the network had RMS error criterion using the same training parameters
reached its confidence criterion. Among these are the and then tested on the full set of echoes
possibility that the dolphin considers a broader range of
targets in making its classification. This dolphin was Backpropagation results
highly experienced having served in various forms of the
experiment with many different targets for more than 5 Figure 4 shows the confidence of the network in
years Although this experiment was designed to present assigning the echo train to the proper category as a
only the same three targets at all times, the dolphin may function of the number of echoes received. Compared to
have persisted in classifying the echoes relative to a the categorization performance of the integrator network,
much larger set of targets. More echoes may be the backpropagation network was much more variable
necessary to discriminate among this broader range of Whereas the integrator network was trained to recognize
targets integrated combinations of echoes, the backpropagation

Another possibility is that the dolphin uses other network was trained to recognize individual, independent
information besides that used by the network. For examples of echoes
example, although the network was trained to classify As Figure 4 illustrates, the individual echoes were
targets on the basis of relative-amplitude echo spectra, highly variable, and frequently assigned to an erroneous
the dolphin may use absolute target "strength" or a category
variety of time-domain features (Au, 1988) as
discriminative cues These data suggest that the integrator network

A third possibility is that the dolphin may not be added significantly to the ability to classify sequentially
able to represent the echo spectra with the same fidelity produced echoes In other words, by implementing a
that was available to the network The dolphin may signal "averaging" mechanism in the neural network we
occasionally "forget" or fail to attend to some of the allowed the system to take advantage of the redundancy
echo information We also time-windowed the echoes inherent in the use of multiple echoes from the same
aMd thereby focused the network's "attention" source and in the stochastic properties of the noise it
,pecificallv on these intervals [the dolphin nm\ not bc Mich those echoes ate embcddcd

Y1" I



In contrast, the backpropagation network was Cybernetics, 23, 187-202.

Hecht-Nielsen, R. (1987). Counterpropagation networks.
Applied Optics, 26, 4979-4984.

Sphere McClelland, J. L & Rumelhait, D. E. (1988).
Explorations in parallel distributed processing.

C~~dN1VI1~1'h1'AI~lAU~\ Cambridge, MA: MIT Press.
- .......... . Moore P. W. B. & Pawlosld, D. (1990). Investigations

on the control of echolocation pulses in the dolphin
(Tursiops truncatus). In J. Thomas & R. Kastelein

S4. (Eds.) Sensory abilities of cetaceans. New York:
Plenum Press

" successi, Eh• .. Nachtigall, P. E. (1980). Odontocete echolocation
_.T performance on object size, shape, and material, In R. G.

Busnel & J. F. Fish (Eds.), Animal Sonar Systems, pp.

... ,071-95, New York: Plenum Press.

* U ' . . . . . . Nachtigall, P. E., & Moore, P. W. B. (Eds.) (1988).
Successive Animal sonar: Processes and performance. New York:

Plenum.
Figure 4. Confidence of the backpropagation network in assigning the Qian, N. & Sejnowsld, T. 1. (1988). Predicting the
echo to train to the proper caagory as afunction ofthe number of secondary structure of globular proteins using neural
ech&es reciied. N is the number of trains classifiedfrom each target. network models. Journal of Molecular Biology, 202,

865-884.
required to process not only the characteristics of the Roitblat, H. L, Moore, P. W. B., Nachtigall, P. E.,
echoes themselves, but also the characteristics of the Penner, R, H, & Au, W. W. L (1989). Dolphin
noise. This results in many spurious classifications. echolocation: Identification of returning echoes using a
Presumably, if a larger training set had been employed, counterpropagation network. Proceedings of the First
the backpropagation network would have learned to International Joint Conference on Neural Networks.
"abstract" the salient properties of the echoes, but within Washington, DC: IEEE Press.

the constraints of a relatively small training set (60 of Roitblat, H. L, Penner, R H., & Nachtigall, P. F.
S1,335 or just 4% of the total number of echoes), the (1990). Attention and decision making in echolocation
integrator network does a much better job of separating matching-to-sample by a bottlenose dolphin (Tursiops
the signal from the noise. truncatus): the microstructure of decision making. In J.

The gateway integrator network adds a level of Thomas & R. Kastelein (Eds.), Sensory abilities of
complexity to the standard backpropagation network cetaceans. New York: Plenum Press (pp. 665-676).
architecture that contributes substantially to its RumeIhart, D. F, i-nton, G. E. & Williams, R. .
performance. Its design is inspired by properties of the (1966). Learning internal representations by error
dolphin's performance and it represents one step along a propagation. In D. E. Rumelhart & J. L. McClelland
development path that seeks to include more of the (Eds.), Parallel. distributed processing: Explorations in
mechanisms that we can identify from the neurobiology the microstructure of cognition, vol 1.: Foundations.
of echolocation (e.g.,Suga, 1990) and from the Cambridge, MA: MIT Press. pp. 318-362.
performance of dolphins in their aquatic environment. Smith, P. L & Vickers, D. (1988). The accumulator
Although the results of the present study do not prove model of two-choice discrimination, Journal of
that dolphins perform similar integration, this integration Mathematical Psychology, 32: 135-168.
model seems to provide a better account than a decision Suga, N. (1990). Cortical computation maps for
model that does not integrate, auditory imaging. Neural Networks, 3, 3-21.
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